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ABSTRACT

Control of a modem submarine is a multi-dimensional problem coupling initial

stability, hydrodynamic and control system response. The loss of stability at moderate

to high speeds is examined using a nonlinear Hopf bifurcation analysis. Complete linear

state feedback is used for demonstration purposes for depth control at level attitude and

for a fixed nominal speed. Control time constant, nominal and actual speeds, metacentric

height, and stem to bow plane ratio are used as the main bifurcation parameters. A

complete local bifurcation mapping provides a systematic method for evaluating the

bounds of controllability for control system design parameters for a submarine with a

given set of hydrodynamic coefficients. The submarine and its potential design

modifications are then verified with a nonlinear simulation program.
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NOMENCLATURZ

Symbol Definition

A closed loop dynamics matrix for the linearized
system

a dummy independent variable
o bow plane to stern plane deflection ratio

(or, control surface coordination gain)
b(x) local beam of the hull
B vehicle buoyancy
CD quadratic drag coefficient
C1 ,C 2  coupled heave and pitch terms
dQ.,dw cross flow drag terms
ab bow plane deflection
8616 stern plane deflection
6 sat saturation value of 6
Iy vehicle mass moment of inertia
kl,k 2 ,k 3 ,k 4  controller gains in Ow,q, and z, respectively
K cubic stability coefficient
m vehicle mass
M pitch moment
Ma derivative of M with respect to a
q pitch rate
a vehicle pitch angle
R,G polar coordinates of transformed reduced system
T matrix of eigenvectors of A
Tc time constant
U vehicle forward speed
U0  nominal forward speed
w heave velocity
W vehicle weight
x state variable vector
(XBZB) body fixed coordinates of vehicle center of buoyancy
(XG,ZG) body fixed coordinates of vehicle center of gravity
z state variables vector in canonical form
z deviation off the nominal depth
ZGB vehicle metacentric height
Z heave force
Za derivative of Z with respect to a
WO frequency at the bifurcation point

vi
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I. INTRODUCTION

The fundamental goal of submarine control is to reach and

maintain ordered depth. Any design that does not meet this

goal, in the face of the inherent complexities, is not overly

useful as a practical vessel. Current evaluation schemes

involve extensive model testing such as those done on the

DARPA SUBOFF Model (DTRC Model 5470) [ref. 8]. This is an

expensive and time consuming evaluation method. The goal is

to develop an analytic method to determine the stability of a

potential design. Much work has been done on depth control

and modelling of submarines in the vertical plane [ref's. 1,

2, & 3] but this work has assumed the existence of a stable

platform.

The stability of a design will have a significant impact

on its responsiveness. A vehicle with a large margin to

instability will not be very responsive. The problem becomes

one of determining how close to the margins we can get without

a total loss of stability. Nonlinear dynamics and chaos

provides us with the tools for solving this problem [ref's 9,

& 101. By expanding the scope of our research to include

nonlinear terms we are able to define the limits of stability

and therefore the margins. At the Naval Postgraduate School

there has been extensive work on defining the nature of the

instabilities that are encountered in the control of
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submersibles in path keeping and the dive plane [ref's 4, 5,

& 6].

At low forward velocities a submersible using stern planes

for attitude and depth control can experience a loss of

stability in the form of stern planes reversal. This is a

pitchfork bifurcation that can be predicted [ref. 7] and can

be accounted for in the control design. The purpose of this

thesis is to develop a program for finding the limits of

stability for a submarine at moderate and high speeds. Once

these limits are mapped then the nature of the loss of

stability must then be determined. For this we use a Hopf

bifurcation analysis along with a nonlinear simulation

program. Finally, after the limits are determined we are able

to define the control system design parameters and evaluate

the controllability of the design.

2



II. PROBLE FORMULATION

A. EQUATIONS OF MOTION

By restricting the submersible's motion to the vertical,

or dive plane, the motion can be modeled by the coupled

nonlinear equations for pitch and heave. With a body fixed

coordinate frame at the vehicles geometric center, we can

express Newton's equations of motion as

me(w- Uq - zcq 2 
- xG4) = Z44 + Zor + ZqUq + ZUw

-CDf ?sb (x) (w-xq) 3 dx (2.1)
TAIL IW-Xgl

(W-B) cose + U2 (Z 6 8 + Z4 6 b)

and

IAy + mZGwq - mXG( - Uq) = M*4 + Mlj + MqUq + MUw

+CNOSEbW (w - xq) 3
4 DJwTAIL WX (2.2)

- (x 0 W - x 8 B) cosO - (ZGW - zBB) sine

+ U2 (M868 + M6b6ab).

,or simplicity we will assume that the drag coefficient, CD,

is constant over the length of the submersible. This does not

have a significant effect on the results.
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The pitch rate and depth rate for a submersible is given

by

S= q,(2.3)

S= -UsinO + wcosO , (2.4)

respectively. In equations (2.3) and (2.4) 0 is the pitch

angle of the vehicle as meas'ired from the horizontal plane.

Figure (2.1) shows the geometry and definitions for most of

the symbols. We assume that forward velocity, U, is

maintained constant during maneuvers by an appropriate use of

the propulsion system.

B. CONTROL LAW

Equations (2.1) through (2.4) can be written as a set of

nonlinear differential equations in the form,

e = q, (2.5)

ir = a 1 1Uw + a 1 2 Uq + a 1 3z, 8sine + b 11U2 6, + b12U 2 6 b (2.6)

+ dw(w,q) + c1 (w,q)

4



q = a 21Uw + a 22 Uq + a 2 3 z08sinO + b 21 U2 86 + b 2 2 U28 b

+ dq(w,q) + c2 (w,q) ,

2 = -UsinO + wcosO , (2.8)

where,

DV = (m-Z4) (IY-M )-(mxG+Z4) (mXG+M1)
= (IY-MY) ZW+ (mxG+Z4) M, I

a12DV = (Iy-M4) (m+Zq) + (mxG+Z4) (Mq-mxG)
a 13DV = - (mxG+Z4) W I

b11DV = (IY-M*) Z.+ (mxG+Z4) Ma,bl2Dv = z-M
a 21Dv = (m-Zl) M-+ (mXG+M1) Zk,
a 22DI = (m-Z*) (Mq-mXG) + (mXG+M,) (m+Zq) (2.9)
a23Dv = - (m-Z*) W ,
b 21Dv = (m-Z,) Ma + (mxG+M,) Z,
b 2 2Dv = (m-Z,) Mal+ (mXG+M.) Zab,

dw(w, q) Dv = (Iy-M4) IW+ (mxG+Z 4 ) Iq I

dq(w, q) Dv = (m-ZW) Iq+ (mxG+M,) Iw
c1 (w, q) Dv = (I4-M¢) mzuq 2 - (mxG+ZY) mZGWq,

C2 (w, q) Dv = - (m-Z4) mzGwq+ (mxG+M;) mzGq 2

In equations (2.5) through (2.8), the vehicle is assumed to be

neutrally buoyant (W = B), level (xG = XB), and statically

stable (ZG > ZB) . The terms Iw and Iq represent the cross flow

drag integrals in equations (2.1) and (2.2), and ZGB = ZG -zB

is the metacentric height. We can assume ZB to be zero,

therefore ZGB - zG.

The depth control system uses the linearized form of

equations (2.5) through (2.8) with the linearization at the

5



nominal conditions of level attitude, ordered depth and

forward speed. This gives the state space form of the depth

control equations as

(2.10)

S= a11 Uow~a12 Uo qa 1 3zQGO+bi UO6 , (2.11)

= a 21 Uow*a 22 Uoqa 2 3 ZGBO~b2 U026 , (2.12)

-+ = -UoE+w , (2.13)

where U0 is the nominal speed for gain selection, and the

control inputs are defined as

as = 8
b =a8 , (2.14)b, = b11 +ab12

b2 = b 21 +ab 22

where a is the control surface coordination gain. This

produces a linear full state feedback control law of

6 = k1 6+k2w+k 3q+k 4 z , (2.15)

where the gains k., k2 , k3 , and k4 are computed to give the

closed loop system, equations (2.10) through (2.13), the

6



desired dynamics. Since the desired characteristic equation

has the general form,

14da313 +a 2 X2 +a I)+a0 = 0 , (2.16)

the controller gains are computed by equating coefficients of

the actual and desired characteristic equations,

baU0
2k 2 +b2 Uo2k 3 = -' 3 - (a 11+a 22 ) U,

b2 Uo2k+ (b2a12 -bla2 2 ) Uo3k 2+ (bja21 -b 2a1 1 ) U0
3 k3 +bjU02k

= •a2-a 23zGB+ (a 11a 2 2 -a 21 a1 2 ) ,

(2.17)
(b 2a11 -bja 21) UO3 k, + (bla2 3 -b.a13) zGBUo 2 k 2

+ (b2 +b a 22 -b 2a1 2 ) U0
3k 4= ao+ (a 13a 21 -a 23ald) ZUo,

(bja21 -b 2ajj) U04+ (bja23 -b 2a 213) zGEUo2] k 4 = ao

[ref. 7]
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Nominal
Depth

U

Horizontal Plane 7

5q

Figure (2.1) - Geometrical representations of the basic

definitions for the equations of motion.
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III. STABILITY

A. BIFURCATION ANALYSIS

In system dynamics, the classical definition of stability

states, that the real part of all the eigenvalues of the

system must be negative. Therefore, our initial

investigations into the stability of the SUBOFF Model was to

find those eigenvalues whose real parts cross the imaginary

axis. We used the bifurcation analysis program, included as

Appendix A, to calculate the eigenvalues of the system.

By linearizing the equations of motion, equations (2.1

through 2.4), the state space equations of the dynamic system

can be written in the form

.*=Ax+BU 
(3.1)

where

u=-KZ (3.2)

and K is the matrix of controller gains, as calculated by pole

placement in equation (2.17). The eigenvalues of the system

are found by solving

detP-BK-sll=0. 
(3.3)
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In the bifurcation analysis program a pseudo-root locus

method is employed where the time constant, Tc, is fixed. The

constant TC fixes to placement of the system poles at a given

nominal forward speed U0 and then the model speed, U, is

varied incrementally with the system eigenvalues calculated at

each speed increment. When the real part of an eigenvalue

changes sign between the limits of a speed increment a

bisection method is employed to find the speed where the real

part of the eigenvalue equals 0.

For each point where the real part of an eigenvalue

crosses the imaginary axis the associated TC and U are plotted

on a bifurcation map. This map delineates the regions of

classical stability (all eigenvalues on the left hand half-

plane) from the regions of instability (at least one

eigenvalue in the right hand half-plane). A family of

bifurcation maps were generated by varying nominal speed, U0,

initial stability, ZGB, and control surface gain, a.

B. TYPICAL RESULTS

Figure (3.1) shows a typical bifurcation map with its five

distinct regions. Region I is the area of classical

stability. In region II there is one real positive eigenvalue

which is indicative of a pitchfork bifurcation. Pitchfork

bifurcations of this model were previously examined by Reidel

[ref. 7]. Regions III, IV, and V have at least one pair of

complex conjugate eigenvalues with a positive real part. This

10



would indicate that there should be an unstable oscillatory

behavior for the model.

C. SIMULATIONS

An extensive set of simulations were run to verify the

bifurcation map's prediction of system stability. While the

results of simulations showed the demarcation between the

stable and unstable regions, the simulations found that the

linear bifurcation analysis failed to predict the method of

departure from stability. Five points (a through e) as shown

on fig. (3.1) were chosen to illustrate the model's behavior

in the regions of interest. Table (3.1) lists the eigenvalues

found at each of these points and Table (3.2) shows the

eigenvalues associated with the exact bifurcation point near

points (b through d). Note that the eigenvalues are given in

dimensional terms while all other information in the tables

are non-dimensionalized.

Point a is in the region of stability and fig (3.2) shows

a rapid convergence to nominal stability. Simulations run at

points b, c, and d are shown on figures (3.3), (3.4), and

(3.5). These points are spaced less than 2.2 kts apart but

they have a huge difference in their bounded oscillatory

behavior. Table (3.1) also lists the measured and theoretical

periods for these three points. The theoretical period is

computed by dividing 2w by the imaginary part of the

eigenvalue with the largest real part, and then non-

11



dimensionalize it by the ratio U/L, where U - speed of the

vehicle (in feet per second) at each point, and L - vehicle

length (13.9792 ft). An interesting point to note is the

behavior at point d, where the measured period is

approximately one half of the theoretical period. The

dominant period at 80 nd sec is associated with the creation

of the limit cycle at the bifurcation point while the 155.4 nd

sec period is part of the chaotic response found at point d.

Table (3.2) shows the eigenvalues, measured, and theoretical

periods at the exact bifurcation points. Finally a simulation

run at point is shown in figure (3.6) and demonstrates an

unbounded departure from stability.

It is evident that a more detailed analysis had to be

performed, and that a Hopf bifurcation analysis should be

used.

12



BIFURCATION MAP FOR UO = 9.0 FPS
6

55 a c d Zg 0.4, Alpha 0.0

x U

0IVa IIIIV
* 4

a 31

2z

Ne V

0 0.5 1 1.5 2 2.5 3

VELOCITY (non-dimensional)

Figure (3.1) - A typical bifurcation map showing the five

distinct regions.
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COMPARATIVE SIMULATION PLOT

0.8T- = 4.75 nd secs, UO = 9.0 ft/sec

0.6

0.4

U *0.2

"V 00

• -0.2

-0.4

-0.8

-Zg = 0.4 ft, Alpha - 0.0 U = 0.50 nd speed
-1~a

S,. I I I I I I j

0 10 20 30 40 50 60 70 80 90 100

Time (nondimensional)

Figure (3.2) - An example of the stable response found in

region I. This corresponds to Point a in fig. (3.1).
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COMPARATIVE SIMULATION PLOT

To = 4.75 nd secs, UO = 9.0 ft/sec

0.5

0

I-,

-0.5

Zg = 0.4 ft. Alpha = 0.0 U = 0.62 nd speed

700 710 720 730 740 750 760 770 780 790 800

Time (nondimensional)

Figure (3.3) - This figure corresponds to Point b in fig

(3.1) and shows the oscillatory behavior in region III.
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COMPARATIVE S[MULATION PLOT

0.8
Tc = 4.75 nd secs, UO = 9.0 ft/sec

0.6

0.4
U

I. 0.2

* 0-

* -0.2
E-

-0.4•

-0.6

-0.8 Zg = 0.4 ft. Alpha = 0.0 U = 0.94 nd speed

"700 710 720 730 740 750 760 770 780 790 800

Time (nondimensional)

E.o

Figure (3.4) - This simulation corresponds to Point c in

fig. (3.1). Note the distinct difference in the nature of

oscillations between this point and Point b.
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COMPARATIVE SIMULATION PLOT
20

Tc = 4.75 nd secs, UO = 9.0 ft/sec15

10

S* 5

V• 0-S

,= -5
I-

-10

-15

Zg = 0.4 ft, Alph = 0.0 U = 1.03 nd speed

-20 1
600 620 640 660 680 700 720 740 760 780 800

Time (nondimensional)

Figure (3.5) - This simulation corresponds to Point d in

fig. (3.1). Note the magnitude of the oscillations associated

with region IV.
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COMPARATIVE SIMULATION PLOT
10

Tc = 0.20 ad sees, UO = 9.0 ft/sec

0

-5S

* -10

• • -15

0

• -20

-25

-30

-35 Zg = 0.4 ft, Alpha = 0.0 U = 1.50 ad speed

-40 ----------- I.,
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (nondimensional)

Figure (3.6) - The simulation run at Point e in region V

of fig. (3.1) shows the unbounded behavic'. found in this

region.
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Points Eigenvalues U Measured T Theoretical T
(fps) (nd sec) (nd sec)

a -0.4581, -0.0001 0.50U0  4.13 5.00
-0.0515 ± 0.4938

b -0.6206, -0.0003 0.62U0  5.59 5.62
0.0052 ± 0.4463

c -0.5888, -0.0046 0.94U0  12.86 12.75
0.0067 ± 0.2983

d -0.3000 ± 0.2889 1.03U0  80.00 155.4
0.0387 ± 0.0268

e -27.890, -1.7300 1.50U0  NA 1.46
0.7100 ± 4.1700

Table (3.1) - A listing of the points in fig. (3.1) and

their associated eigenvalues, and periods.
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Points Eigenvalues U Measured T Theoretical T
(fps) (nd sec) (nd sec)

b -0.6070, -0.0002 0.61U0  6.11 5.57
0.0000 __0.4506

c -0.5710, -0.0054 0.93U0  13.13 13.18
0.0000 ±_0.2884

d -0.2675 ± 0.2063 1.02U0 74.93 74.67
0.0000 ± 0.0558

Table (3.2) - Listing of the eigenvalues and periods of

the exact bifurcation points associated with the points in

Fig. (3.1).
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IV. HOPF BIFURCATION

A. INTRODUCTION

By definition a Hopf bifurcation occurs when a pair of

complex conjugate eigenvalues cross into the right hand half-

plane. When this occurs the system will deviate from a steady

state solution in an oscillatory manner. This deviation can

be either supercritical or subcritical.

For the supercritical case shown in fig. (4.1), stable

limit cycles form after straight line stability is lost.

Assume that a parameter, w(t), is varying. When t is less

than tcrit all of the eigenvalues of the system are located in

the left hand half-plane and the system is nominally stable.

At t equal to tcrit, a complex conjugate pair moves into the

right hand half-plane and forms the stable limit clcle. As

the distance w(t) increases from w(tcrit), where the difference

D = w(t) - W(tcrit), the amplitude of the limit cycle will also

increase. If D remains small then the system will remain near

the nominal steady state solution.

Fig. (4.2) shows the subcritical case with unstable limit

cycles being generated prior to the critical point being

reached. Thus, as w(t) approaches w(tcrit) the system could

deviate from the nominal steady state solution and converge to

a large amplitude limit cycle before the nominal system loses

21



stability. Hence a random disturbance can cause a nominally

stable system, one with all of the eigenvalues in the left

hand half-plane, to exhibit oscillatory behavior. Once w(t)

equals W(tcrit) the nominal system becomes unstable and a

discontinuous increase in the amplitude of oscillation is

seen. This is because there are no nearby stable attractors

for the system to converge to.

A system design must make a distinction between these two

types of bifurcations because of the disparate nature of the

losses in stability. Thus the designer cannot rely on a

linear approximation and must use higher order approximations

(3 rd order) of the equations of motion to adequately analyze

his/her system.

B. THIRD ORDER APPROXIMATIONS

The nonlinear equations of motion are expanded using a

third order Taylor series approximation near the nominal

steady state, x = [0]. The control law is then modelled as,

6/ = 6,atanh ( a )
6'= 6 st'(4.1)

asar

where 6sat is the saturation angle of the control plane input.

Using the same approximation for the control law as the

equation of motion, 6' becomes

22



8' = 8- 1 2 83 (4.2)38 ,,2
sat

Therefore, the state equations can now be written as

=Ax + g(x) , (4.3)

where

x=[O w q Z] T , (4.4)

and the higher order terms are,

g, = 0 , (4.5a)

g2 = bU 2 63 (O, w, q, z) - l a13ZGB03
S6 (4.5b)

+ Cl l q 2 + C1 2 Wq

93 = b 2U263 ((, w, q, z) - -. a2 3 ZGB83
(4.5c)

+ C2 1 wq + c 2 2 q 2

94 - W2 + 3 (4.5d)
23 6

23



The term 63 contains the third order terms derives from

substituting 8 into 6'.

Defining T as the matrix of eigenvectors of A evaluated at

the Hopf bifurcation point, then the transformation,

z = Tz , (4.6)

transforms the system into a canonical form

S= T-1 ATz + T-lg(Tz) (4.7)

At the bifurcation point

0 W 0 048

T-'AT = WO0 (4.8)

0 0

with w0 > 0 and p,q < 0. z 3 and z4 correspond to p and q and

are asymptotically stable. Center manifold theory states that

the stable coordinates z 3 , z 4 can be expressed as polynomials

in the critical coordinates z1 , z 2 and this relationship is at

least second order. Therefore, we can write,

z3 = alzi2 + a2z1z2 + a 3z 2
2 , (4.9a)

and

Z4 = PJz12 + P 2z 1z 2 + 0 3z 2
2  (4.9b)
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The coefficients ci and fi can be computed as follows: We

differentiate equations (4.9) with respect to z,

2 3 = 2QCgz 1z1 + O2 (21z2 + z1+2) + 2a 3z 2 2,

-4 = 2plz1±1 + P 2 (*lz 2 + Z122) + 2P 3 z 2±2

and substitute 1 - WOZ 2 , and 12 - 'oZ- Therefore,

23 = 2()0Zl2 + (2a 3 - 2al)(')oZl Z2 - ,2•0Z2 2 (4.10a)

and

-4 = P2cW0z 1
2 + (2P 3 - 2j1) o0Z1Z2 - 2 w0 z 2

2 2 (4.10b)

The third and fourth equations of (4.7) are written as,

where,

[D] = T-1g 2 (Tz)

and g2 (Tz) contains the second order terms of g(Tz). We

substitute equations (4.9) into (4.11) and equate coefficients

with (4.10). In this way we get a linear system in ai, and

fi- From this we can write the two dimensional state space

equations as
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Z = (-)oZ2 + Z11z13 + r12Z2z2 + r13zIZ22 + r I 1 4 Z2
3

+ p 11zl 2 + P12ZIZ2 + P13Z22 a

and

2= (A)0 Z1 + 1 2 1 ZI 3 + r22Z2Z2 + r23ZlZ22 + r 2 4 Z 2
3  (4.12b)

+ P21Z12 + P22Z1Z2 + P 2 3 Z 2 2

where the coefficients rij and pij are derived from equations

(4.8).

These equations are only valid exactly at the Hopf

bifurcation point. For speeds U in a region near the

bifurcation point these equations become

21 = aczE 1 - (( 00 + (/6) z 2 + F1 (z1 z 2 ) , (4.13a)

and

"±2 = (W0 + cs)')z 1 + a'ez 2 + F2 (z1 1 z 2 ) , (4.13b)

where: a', W' are the derivatives with respect to U of the

real and imaginary parts of the critical complex conjugate

pair of eigenvalues evaluated at the bifurcation point: e is

the difference in U from the critical value; and, the

nonlinear functions F1 and F2 are
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F1 = 1 zz2  r 4 2+ = 11i3 + r12Z12Z2 + X1 3 ZiZ22  (4.14a)
+Plizi2 + P12Z1Z2 + P13z22

and

F 2 = 21Z13 + r 2 2 Z 1
2 Z 2 + X23Z1Z22+ r 2 4 Z 2

3

+ p 21Z12 + p 22z1 z 2 + p 23z 2
2  4

By transforming zi and z2 to polar coordinates in the form

z, = RcosO (4.15a)

Z2 = Rsine (4.15b)

equations (4.13) become

R = aeR + F1 (R,e)cos@ + F2 (R, 0) sinO (4.16a)

and

RO = (w + wle)R + F2 (R,O)cos@ - F 1 (R,e)sin. (4.16b)

Equation (4.16a) then yields

R = a eR + P(0)R3 + Q(e)R 2  (4.17)

By averaging equation (4.17) over one cycle we can obtain an

equation with constant coefficients. Defining
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K = P(e) , (4.18)

and

L • - 0]oQ(e)de , (4.19)2tfo

and carrying out the integration we obtain

L = 0, (4.20)

and

K 1 (3ri + 1 + r22 + 3r 24 ) (4.21)
8

which reduces equation (4.17) to

R = a'eR + KR3  (4.22)

The existence and stability of the limit cycle is

determined by analyzing the equilibrium points of the averaged

equation (4.22), which correspond to periodic solutions in z1

Z2 as seen in the coordinate transformation equations (4.15).

From equation (4.22) we can see that two conditions exist,

1) If a' > 0, then:

(a) If K > 0 then unstable limit cycles coexist with the
stable equilibrium for e < 0.
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(b) If K < 0 then stable limit cycles coexist with the

unstable equilibrium for e > 0.

2) If a' < 0, then:

(a) If K > 0 the unstable limit cycles coexist with the
stable equilibrium for E > 0.

(b) If K < 0 then stable limit cycles coexist with the

unstable equilibrium for e <0.

From this criteria, by computing the nonlinear coefficient

K we can use it to distinguish the two different types of Hopf

bifurcations:

"* Supercritical if K < 0;

"* Subcritical if K > 0.

[ref. 6]

C. RESULTS

A typical bifurcation map of stability for the SUBOFF

Model is shown in fig. (4.3). This map is characterized by

the Pitchfork bifurcation curve (P) and the three Hopf

bifurcation curves (H1, H2, and H3). The nature of curve P

was previously analyzed and those results (Riedel, 1993) are

reconfirmed in this study.

Curve Hi is characterized by a weak supercritical branch

(a - b) at low nominal speeds, U0 . As U0 increases this

branch develops a weak to moderate subcritical behavior with

K between 0 and 102. The second branch of H1 (b - c) has a
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consistent moderate subcritical behavior with K on the order

of 102.

Cusp (C) marks the intersection of curve H2 with curve H3.

The cusp is highly dependent on both U0 and initial stability

ZGS-

As ZGB, for a given U., increases curve H2 (d - e) shifts

from a very weak subcritical nature with K between +10-2 and

1 to a very weak supercritical nature with K between -1 and

10-2. With a lower U0 and/or higher ZGB, point e moves down

in the time constant and may not intersect curve H3.

Curve H3 (f - g) is a strong supercritical bifurcation

with K values between -10 4 and -106. The position of H3 is

independent of U0 , initial stability, and control surface

coordination gain.

Finally, curve H4 is a strong subcritical branch with K

having values between 103 and 106. Because of this highly

subcritical behavior, H4 can dominate and obscure the stable

region at speeds greater than U/U0 = 1.

Figure (4.4) plots the K values for a representative

bifurcation map shown in fig (3.1). Note the predicted super-

and subcritical branches associated with fig (4.3). Point (a)

is inside the stable region I and the numerical simulations

seen in fig. (3.2) converge to zero. Point (b) is located in

the unstable region, immediately after a supercritical

bifurcation. As a result, small amplitude limit cycle

oscillations have developed. The same is true as we move
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towards point (c) although we expect a family of unstable

limit cycles around this point as a result of the subcritical

bifurcation. This point is further explored in the next

section. As we approach point (d) a family of stable limit

cycles is generated but its behavior is influenced by the

previously developed unstable limit cycles. The real part of

the critical pair of eigenvalues is becoming positive and

relatively large, see fig. (3.1), which means that the

amplitudes of these stable limit cycles are expected to be

significantly higher, a result which is confirmed by fig.

(3.5). The imaginary parts of the critical pair of

eigenvalues are also changing very fast in this region. This

means that the period of these limit cycles must be computed

based on the value of the imaginary part right at the

bifurcation point, rather than its value at the specific

parameter point. This was observed previously in tables (3.1)

and (3.2). Point (e) is in the strongly subcritical region V,

thus we see the rapid divergence from stability as seen in

fig. (3.6).

D. SIMULATIONS

The response of the submersible was simulated using an

Adams-Bashforth integration scheme in Fortran program coding

and is included in Appendix C. The contro7 law (2.15) and

gains (2.17) discussed in Chapters II and III were used. Non-

dimensional ships speed and control system time constant,
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nominal speed, initial stability, and control surface

coordination gain were the input values to tle system. A

nominal 0.1 ft/sec vertical speed was used as the external

initial disturbance.

The simulations were used to compare the Hopf bifurcation

data in two ways:

1) By confirming sub-/ supercritical behavior predicted by
the K factor, and;

2) By comparing the predicted to simulated period of
oscillations.

In fig. (4.5) we have plotted the stable equilibria and

the stable and unstable limit cycles from our example first

used in fig. (3.1). Figure (4.5) clearly shows the predicted

sub- and supercritical behavior that the K values predicted.

The important features to note in fig. (4.5) are:

1. Unstable limit cycles found with the subcritical Hopf
bifurcation;

2. The divergence of tne amplitudes as the velocity moves
away from the bifurcation point velocity, and;

3. The rapid divergence of the right most bifurcation and
its quick and abrupt termination.

To see why the abrupt termination occurs we must look at

the root locus plot as shown in fig. (4.6). The parameter in

this the third bifurcation terminates when there is a break in

point and the complex conjugate pair, which had given the

oscillatory response, becomes two positive real eigenvalues.
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These two eigenvalues now make the system completely unstable.

The splitting of this complex conjugate pair into two real and

positive eigenvalues can be better seen in fig (4.7).
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SUPERCRITICAL HOPF BIFURCATION

Z

Stable Limit Cycle

/ Nominal
C/ Steady State Solution

Steady State Solution So

Y

Figure (4.1) - An example of a supercritical Hopf

bifurcation where the system has a nominal steady state

solution until point C, which occurs at tcrit. After tcrit the

system becomes unstable but forms a stable limit cycle.
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SUBCRITICAL HOPF BIFURCATION

Large Amplitude
Stable Limit Cycle

Nominal

" " C Steady State Solution

Steady State Solution '" " Unstable
LimitaCyle /

Y

Figure (4.2) This figure shows a subcritical Hopf

bifurcation where the system loses stability prior to reaching

point C, which again occurs at tcrit.
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A TYPICAL BIFURCATION MAP6 ,/
5I

I H2

/ Cf

3LP !H1 /H3

2L-

STABLE REGION

0 0.5 1 1.5 2 2.5

VELOCITY (non-dimensional)

Figure (4.3) - An annotated bifurcation map for the SUBOFF

Model.
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BIFURCATION MAP FOR UO = 9.0 FPS

4.04.Aph .

4.
4.

+.
+ 4.- 4-" Zg = 0.4, Alpha =0.05 a b c:•:d

. 4.

+II * + ÷ IV Pitchfork bifurcation (
+ 4 ,

I 4-*

SK value < 0(.
3- I

2- K value ? 0 (++-++)

z
4. 4- 4•

e +

0 0.5 1 1.5 2 2.5

VELOCITY (non-dimensional)

Figure (4.4) - A plot of the K values associated with fig.

(3.1).
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LIMIT CYCLES FOR UO 9.0,Zg = 0.4, Alpha = 0.0

20 ,

Stable limit cycles ( ) Unstable limit cycles (----

10.. . .. . .

to-"

SU 5

Unstable equilibria(....._)
V 0

A -5

-10...

-15 ....

-20'
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 t.05

Velocity (non-dimensional)

Figure (4.5) This shows the amplitude response for a

speed range encompassing the Hopf bifurcation points that are

shown in fig. (3.1).
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DETAILED LOW SPEED ROOT LOCUS PLOT

0.8 ..... ...

0.80 UO 9.0 fps (
0.6.

0 4Zg = 0.4 ft.......0 .4 -.

0.2 . Alpha =0.0

0o .. _ __

-0.2-

-0.4 ) -$

-0.4 -

-0.81

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.L

Figure (4.6) - The root locus plot of the eigenvalues

associated with fig. (4.5).
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REAL PART OF THE EIGENVALUES VS. U
0.4

UO = 9.0 fps

Zg = 0.4 ft0.2 .-

Alpha = 0.0
r 

."

0 -•.• ......... .cc- ... *

0.2

i -0.2 ....

/ cc
"'.. ... .. ............

-0.6!.

X = Pitchfork demarcation ......

-0.8 |,,[I,

0 0.2 0.4 0.6 0.8 1 1.2 1.

Velocity (non-dimensional)

Figure (4.7) - A plot of the real parts of the eigenvalues

plotted in fig. (4.6).

40



V. APPLICATIONS

A. CONTROL SYSTU PARAMETERS

From the typical bifurcation maps we can see that a region

of stability is created between the pitchfork and Hopf

bifurcation boundaries. For the control system designer the

limits or parameters must be defined prior to starting the

design. By maximizing the region of stability we can give the

designer the most leeway in his/her work. There are three

parameters that we can use to change the bifurcation maps,

nominal speed, initial stability, and the control surface gain

coefficient.

First we will look at changing the nominal speed. In fig.

(5.1) we have plotted three curves for nominal speeds of 3.0,

9.0, and 15.0 fps. We can see that although the pitchfork

line moves to the left in dimensional speeds this line remains

nearly constant with a dimensional stern planes reversal

occurring at 1.2 kts. The high speed Hopf boundaries (U/U 0 >

1.0) move apart as the nominal speed increases. The

effectiveness of increasing U0 is limited in the upper branch

by the fixed position of the H3 line with the maximum

practical TC achieved at a U0 = 9.0 fps. In the lower arm

there is no increase in the stability area after U0 = 9.0 fps

therefore any increase in U0 is pointless. For the low speed
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Hopf curves (U/U 0 < 1.0) we quickly lose our margin of

stability as U0 increases thus necessitating further changes

to regain the lost area of stability.

The next parameter change we examined was varying the

initial stability. Figure (5.2) shows the effect of

increasing Zg from 0.1 to 0.4 ft. The subcritical H4 branch

remains constant while the upper high speed Hopf branch moves

down effectively decreasing the area of stability. The low

speed Hopf curves move up to increase the low speed area of

stability. We can see that the additional loss in area is by

the movement of the pitchfork line to the right. At a Zg =

0.4 ft stern planes reversal occurs at a dimensional speed of

2.4 kts which is well within the currently accepted range of

1.0 to 3.0 kts for modern submarines. Therefore in this

model we would want to balance the initial stability to

maximize the low and high speed areas.

An increase in the control surface gain coefficient, a, is

shown in fig. (5.3). Note that the low and high speed Hopf

curves all move up in time constant. While the low speed Hopf

curves give a large increase in stability, the high speed

curves move up proportionally and there is no increase in

stability area. This does allow the designer to shift the

range of stable time constants without a loss of high speed

stability. The pitchfork line will move to the left until it

equals zero when a = 1.0.
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In order to examine what happens at the extremes of the

design options we can look at the low nominal speed (3 fps)

bifurcation maps. Figure (5.4) shows the typical bifurcation

map such as the one we have previously discussed. As the

metacentric height is increased there are significant changes

in the nature of the bifurcation curves. In fig. (5.5) we see

that the pitchfork bifurcation line has moved significantly to

the right and has intersected the low speed Hopf bifurcation

curve. This intersection along with the merger of the H2 and

H4 curves have combined to reduce the region of stability to

a negligible portion of the map.

A further increase in the metacentric height as shown in

fig. (5.6) demonstrates a dramatic change in the nature of the

stability of the model. The low speed region has two

hyperbolic-like Hopf bifurcation curves (the upper curve

occurs well above the region of interest) bounding the lower

and upper limits of stability. For the speeds U/U 0 > 1.0, the

pitchfork bifurcation line now intersects the H2 curve and

has changed from a supercritical to a subcritical pitchfork.

Figure (5.7) is an example of the effect just described

and how it can occur at higher nominal speeds. This shows

that although initial stability is necessary for overall

stability, if the metacentric height becomes too large it can

have an adverse affect on the performance of the submarine.
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D. SUBMARINE DESIGNEVALUATION

For all of the simulations up to this point the moment and

inertia coefficients of the control surfaces have been .5x of

those listed in the SUBOFF Model report. By using the reduce

effect control surface input we have been able to show stable

simulations in all of the mapped stable regions of the

bifurcation maps.

Linear bifurcation methods fail to predict the change in

system response for changes in control surface coefficients.

The bifurcation maps for .1x to 1.Ox the control surface

coefficients are exactly the same, in other words the

bifurcation points are independent of the size and

effectiveness of the control surfaces. Therefore we must

examine the K values in order to predict the response of the

model.

Figure (5.8) shows the change in stability for the model

with and increase in the control surface coefficients. The

area of lost stability is indicated by the shaded portion of

the map. This loss of stability is caused by the shift of the

H2 curve from weak to moderately supercritical to a strongly

subcritical curve. With two strongly subcritical curves in

the high speed region (U/U 0 > 1.0) the possibility of

subcritical capture is greatly increased. This effect is

confirmed by running an extensive set of simulations and

mapping the change in stable to unstable response. We must

note that this instability occurs in a region that has four
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eigenvalues with negative real parts where linear control

system design would not predict an instability.

With this method a design can be tested and then modified

using the design goals as determined by the nonlinear response

in the simulations. This can change a completely unstable

model such as the SUBOFF Model into one where a large margin

of stability and control system latitude is design into it.
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COMPARATIVE BIFURCATION MAP: INCREASING U0

5 Zg - 0.1, Alpha -0.0

4-

j• 15.0

0 3-30

15.0 13.0

U)

0 0.5 1 1.5 2 2.-5

Velocity (non- dimensional)

Figure (5.1) -The effects of changing the nominal speed,

UO, on the bifurcation ma.ps.
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COMPARATIVE BIFURCATION MAP: INCREASING Zg

5- UO 9.0, Alpha 0.0

0.
4) 4

0..
0.1,-4 ' 0.4 ......... 4

0 0.5 1 1.5 2 2.5

Velocity (non- dimensional)

Figure (5.2) - The effects of changing initial stability,

Z., on the bifurcation maps.
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COMPARATIVE BIFURCATION MAP: INCREASING Alpha

.0

5--UO = 9.0, Zg = 0.4
a
o
0

WI

o

4-

a 3-

1.0

a 2-
0.0

1 1.0 0.01.

00
0 0.5 1 1.5 2 2.5

Velocity (non- dimensional)

Figure (5.-3) -The ef fects of changing the control surf ace

gain coefficient, a~, on the bifurcation maps.
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STABILITY/BIFURCATION MAP FOR UO = 3 FPS
6

5- Zg = 0.1. Alpha =0.0

a-

2-

0

*4 4

I-
z

S 2
0

S~STABLE REGION

0 0.5 1 1.5 2 2.5

MODEL VELOCITY (non-dimensional)

Figure (5.4) - A low nominal speed bifurcation map.
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BIFURCATION MAP FOR UO = 3.0 FPS

5• Zg = 0.2. Alpha = 0.0

3• a

01

o so

• \ ,

-- SaheRegion

00 0.5 1 1.5 2 2.5

VELOCI'TY ( non-dimensionhal )

Figure (5.5) -This demonstrates the effects of an
increase in the metacentric height: for low nominal speeds.
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BIFURCATION MAP FOR UO = 3.0 FPS

5 Zg =0.3, Alpha =0.0
5

---

-* p

': • •)Stable Region

* 0

S0 0.5 2II
VELOCITY (non-dimensional)I.

Figure (5.6) - As the metacentric height increases it has

an adverse effect on the stability of the submarine.
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BIFURCATION MAP FOR UO 6.0 FPS
9

8 Zg = 0.5. Alpha = 0.0

U

7

6

5-

4 -T

3-

2-

STABLE REGION

0.
0 2 3 4

VELOCITY (non-dimensional)

Figure (5.7) - An example of increasing the metacentric

height for a higher nominal speed model.
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CONTROL SUFACE STABILITY EFFECTrS

STABLE REGION

00 0.5122.

Velocity (lon-dixnensional)

Figu e ( .8) he OSS Of stabili~ty due to using fullmoment and inertia coefficients vice the same, coefficients
X0. 5.
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VI. CONCLUSIONS AND RECWCIMNDATIONS

A. CONCLUSIONS

The application of a Hopf bifurcation analysis to a

submarine design can be an effective tool in the design

evaluation and modification phase. These methods when paired

with programs that generate hydrodynamic coefficients for a

submarine will save time, effort, and money by reducing the

amount of model testing necessary to validate a design. An

effective set of control system design parameters will be

generated in the process that will be optimal for the final

design of a submersible.

Secondly, this system will give the limits of the range of

metacentric heights that will maintain stability for the full

range of speeds of the design. As was shown changes in the

metacentric height can have a dramatic affect on stability.

Finally, an evaluation of the need for bow planes or

forward control surfaces are actually to maintain control of

the submarine. If the forward planes can be eliminated a

potential source of aoise would also be eliminated along with

simplifying the design of the control system.
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D. *•RCCANDATIONS

First, modify the programs to evaluate the performance of

the submarine for the effects of external forces such as, wave

effects, currents, and free surface effects.

Second, perform a systematic study of the bifurcations at

conditions other than nominal in trim conditions, such as out

of neutral buoyancy (heavy/light), or out-of-trim fore and aft

conditions.
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APPENDIX A - BIFURCATION ANALYSIS PROGRAM

C PROGRAM BIFUR1.FOR
C BIFURCATION ANALYSIS FOR THE DARPA SUBOFF MODEL
C
C PARAMETERS ARE: TC VS. U
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION K1,K2, K3,K4,L,MQDOT,

& MWDOTMQ,MW,MDS,MDB,MD,
& MASS,IY,WF,pi

DIMENSION A(4,4),FV1(4),IV1(4),ZZZ(4,4),WR(4),WI(4)
C

OPEN (11,FILE='BIF1.RES',STATUS='NEW')
OPEN (12,FILE='BIF2.RES',STATUS='NEW')
OPEN (13,FILE='BIF3.RES' ,STATUS='NEW')

C
WEIGHT=1556 .2363
BUO -1556.2363
L =13.9792
IY -561.32
G =32.2
MASS -WEIGHT/G
RHO =1.94
XB =0.0
ZB -0.0
pi =3.14159

C
C WRITE (*,*) 'ENTER MIN, MAX, AND # OF INCREMENTS IN TIME

CONSTANT'
C READ (*,*) TCMIN,TCMAX,ITC
C WRITE (*,*) 'ENTER MIN, MAX, AND # OF INCREMENTS IN

VEHICLE SPEED'
C READ (*,*) UMIN,UMAX,IU
C WRITE (*,*) 'ENTER NOMINAL SPEED'
C READ (*,*) UO
C WRITE (*,*) 'ENTER XG AND ZG'
C READ (*,*) XG,ZG

TCMIN = 0.1
TCMAX = 9.0
ITC = 200
IU = 200
UO = 12.0
XG - 0.0
WRITE (*,*) 'ENTER MIN, MAX, OF VEHICLE SPEED'
READ (*,*) UMIN,UMAX
WRITE (*,*) 'ENTER ZG'
READ (*,*) ZG
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C
ZGB- ZG - ZB
TCMIN-TCMIN* L/UO
TCMAX'TCHAX* L/U0
UMIN -UMIN*UO
UMAX -UMAX*UO

C
ZQDOT=--6. 3300E-04*0. 5*PRiO*L**4
ZWDOT--l.4529E-O2*O .5*RHO*L**3
ZQ - 7.5450E-03*0.5*RHO*L**3
ZW --1.39l0E-02*0.5*RHO*L**2
ZDS -0.5*(-5.603OE-03*0.5*RHO*L**2)
ZDB =0.5* (-5.6030E-03*0.5*RHO*L**2)
MQDOT--8 .8000E-04*0.*5*PJ{O*L**5
MWDOT--5 .6100E-04*0 .5*RHO*L**4
MQ =-3.7020E-03*0.5*RHO*L**4
MW - 1.0324E-02*0.5*R.HO*L**3
bMS n0.5*(-2.4090E-03*0.5*RHO*L**3)
bM2B -05*( 2.4090E-03*0.5*RHO*L**3)

C
ALPHA- -0.0
ZD= ZDS +ALPHA* ZDB
MD=MDS +ALPHA*NDB

C
DV = (MASS-ZWDOT) *(IY-MQDOT)
& - (MASS*XG+ZQDOT) *(MASS*XG+MWDOT)
A11DV= (IY-MQDOT)*ZW (MASS*XG+ZQDOT) *M
A12DV= (IY-MQDOT) * (MASS+ZO) + (MASS*XG+ZQDOT) *(MO-MASS*XG)
Al3DV=- (MASS*XG+ZQDOT) *WIGHT
BlDV = (IY-MQDOT) *ZD+ (MASS*XG+ZQDOT) *M
A2lDV= (MASS-ZWDOT) *MW+ (MASS*XG+MWDOT) *Z
A22DV= (MASS-ZWDOT) *(MQ-MASS*XG)
& + (MASS*XG+MWDOT) *(MASS+ZQ)
A23DV=--(MASS-ZWDOT) *WqIGHT
B2DV = (MASS-ZWDOT) *MDJ+(MASS*XG+MWDOT) *ZD

C
All =Al lDV/DV
A12 =Al2DV/DV
A13 =Al3DV/DV
A2 1-A2 DV/DV
A22-A22DV/DV
A2 3 A2 3DV/DV
El =BlDV /DV
B2 -B2DV /DV

C
EPS =1.D-5
ILMAX=1500
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C
DO 1 I-i ITC
WRITE (*,2001) I,ITC
TC-TCMIN+ (I-i) *(TCMAX-TCMIN)/ (ITC-1)
POLE-i O/TC
ALPI{A3-4.O*POLE
ALPHA2-6.O*POLE**2
ALPHAl-4. O*POLE**3
ALPHAO- POLE**4
K4-ALPHAO/ ((B1*A21-B2*Al1) *UO**4

& + (B1*A23-B2*Al3) *ZGB*UO**2)
A2M-B1 *U~* *2
A3M-B2*TJO**2
AOM'--(Al1+A22) *UO-ALPHA3
B1M-B2 *JO **2
B2M. (B2*Al2-Bl*A22) *UO**3
B3M= (B1*A21-B2*All) *UO**3
BOM- (Al1I*A2 2 -A2 1*A12) *U * *2 -A23 *ZGB -APHA2 -Bl *UO *UO K4
ClM- (B2*A11-B1*A21) *UO**3
C2Mm (B1*A23-B2*A13) *ZGB*UO**2
COMm (A13*A21-A23*All) *ZGB*UO+ALPHA

& - (B2+Bl*A22-B2*Al2) *K4*UO**3
(2 =CIM*BOM*A3M- B1M*COM*A3M- C1M*B3M*AOM
1(2-12/ (C1M*B2M*A3M- BlM*C2M*A3M- C1M*B3M*A2M)
Kim (COM-C2M*K2)/ClM
K3- (AOM-A2M*K2) /A3M

c
DO 2 J-1,IU

1mIJMIN+ (J-i) *(UMAX-IJMIN)/ (lU-i)
A (1, 1) =0. ODO
A (1, 2) =0. ODO
A (1, 3)-1. ODO
A (1, 4) -0. ODO
A(2, 1) -A13*ZGB+B1*U*tJ*Kl
A(2,2) =All*U +B1*U*tJ*K2
A(2,3)=A12*U +B1*U*U*K3
A(2,4)- B1*U*U*K4
A(3, 1) A23*ZGB+B2*U*U*K1
A(3,2)-A21*U +B2*TJ*t*K2
A(3,3)=A22*U +B2*U*tJ*K3
A(3,4)= B2*U*U*K4
A(4, 1) =-U
A(4,2)=1.ODO
*A(4, 3)=0. ODO
* (4, 4) -0. ODO

C
CALL RG(4,4,A,WR,WIO,ZZZ,IV1,FV1,IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

58



c
IF (J. GT. 1) GO TO 10
DROSOO-DBOS

LL-O
GO TO 2

10 DEOSNN-DEOS
UWN mU
PR=DEOSNN*DEOSOO
IF (PR.GT.0.D0) GO TO 3
LL-LL+1
IF (LL.GT.3) STOP 1000
IL=O
UO-UOo
UN-UNN
DEOSO-DEOSOO
DEOSN-DEOSNN

6 UL-UO
JR -UN

DEOSL-DEOSO
DEOSR-DEOSN
U= (UL+UR) /2 .DO
A (1, 1) -0. ODO
A (1, 2) -0. ODO
A (1, 3) =1. ODO
A (1, 4)-0. ODO
A(2, 1) .A13*ZGB+B1*U*U*K1
A(2,2)-A11*tJ +B1*U*U*K2
A(2,3)-A12*U +B1*U*U*K3
A(2,4)- B1*U*U*K4
A(3, 1)=A23*ZGB+B2*U*U*K1
A(3,2)=A21*U +B2*U*U*K2
A(3,3)=A22*U +B2*U*U*K3
A(3,4)= B2*U*U*K4
A(4, 1) --U
-A(4,2)=1.ODO
A(4, 3)=0.ODO
A(4,4) =0.ODO

CALL RG(4,4,AWR,WI,0, ZZZ, 1V1,FV1, IERR)
CALL DSTABL (DEOS, WR, WI, FREQ)

DEOSM-DEOS
UTM-U
PRL-DEOSL*DEOSM
PRR=DEOSR*DEOSM
IF (PRL.GT.0.DO) GO TO 5
UO=UL
UlN-UM
DEOSO-DEOSL
DEOSN=DEOSM
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IL-IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS (UL-UM)
IF (DIF.GT.EPS) GO TO 6
U-UM
GO TO 4

5 IF (PRR.GT.0.DO) STOP 3200
UO-UM
UN-UR
DEOSO-DEOSM
DEOSN-DEOSR
IL-IL+l
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS (UM-UR)
IF (DIF.GT.EPS) GO TO 6
UzUm

4 LLL-10+LL
WRITE (LLL,2002) U/UO,TC*UO/L

3 UOO=UNN
DEOSOO-DEOSNN

2 CONTINUE
1 CONTINUE

2001 "-ORMAT (215)
2002 FORMAT (4(3X,F1O.6))

END
C

SUBROUTTINE DSTABL (DEOS,WR, WI, OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
DEOS=-1. OD+20
DO 1 I=1,4

IF (WR(I) .LT.DEOS) GO TO 1
DEOS-WR (I)
IJ= I

1 CONTINUE
OMEGA-WI (IJ)
OMEGA-DABS (OMEGA)
RETURN
END
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APPENDIX B - HOPF BIFURCATION PROGRAM

C PROGRAM HOPF1A.FOR
C EVALUATION OF HOPF BIFURCATION FORMULAE USING THE SUBOFF
C SUBMARINE MODEL
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L, IY,MASS,MQDOT,MWDOT,
1 MQ,MW,MD,MDS,lvDB,K1,K2,K3,K4,
2 ALFA1,ALFA2,ALFA3,
3 BETA1,BETA2,BETA3
DOUBLE PRECISION Mll,M12,Ml3,Ml4,M21,M22,M23,M24,
1 M31,M32,M33,M34,M41,M42,M43,M44,
2 N11,N12,N13,Nl4,N21,N22,N23,N24,
3 N31,N32,N33,N34,N41,N42,N43,N44,
4 L21,L22,L23,L24,L31,L32,L33,L34,
5 L41,L42,L43,L44,L25,L26,L27,L35,
6 L36,L37,L21A,L22A,L23A,L24A,L31A,
7 L32A,L33A,L34A

C
DIMENSION A(4,4),T(4,4),TINV(4,4),FV1(4),IV1(4),YYY(4,4)
DIMENSION WR(4),WI(4),TSAVE(4,4),
1 TLUD(4,4),IVLUD(4),SVLUD(4)
DIMENSION ASAVE(4,4),A1(4,4),A.2(4,4)

C
OPEN (10,FILE='HOPF.DAT' ,STATUS='OLD')
OPEN (20,FILE='HOPF.RES' ,STATUS='NEW')

C
WEIGHT=1556 .2363
IY =561.32

L =13.9792

RHO =1.94

G =32.2

XG = 0.0
ZB = 0.0
MASS =WEIGHT/G
BOY =WEIGHT
ZQDOT =-6.330OE-04*0.5*RHO*L**4
ZWDOT =-1.4529E-O2*0.5*RHO*L**3
ZQ = 7.545OE-03*0.5*RHO*L**3
ZW =-1.3910E-02*0.5*RHO*L**2
ZDS =0.5*(-5.6030E-03*0.5*RHO*L**2)
ZDB =0.5*(-5.6030E-03*0.5*RHO*L**2)
MQDOT --8.8000E-04*0.5*RHO*L**5
MW'DOT =-5.6100E-04*0.5*RHO*L**4
MQ --3.7020E-03*0.5*RHO*L**4
MW m 1.0324E-02*0.5*RHO*L**3*
MDS =0.3*(-2.4090E-03*0.5*RHO*L**3)
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MDB -.Q.5*( 2.4090E-03*0.5*RHO*L**3)
C

WRITE (*,1001)
READ (*,*) ITOTAL

C WRITE (*,1002)
C READ (*,*) UO,ZG,DSAT

WRITE (*,1004)
READ (*,*) ZG
WRITE (*,1003)
READ (*,*) ALPHA
ZGB-ZG- ZE
UO = 9.0
DSAT - 0.4

C
ZD= ZDS +ALPHA* ZDB
MD-MDS +ALPHA*MDB

C
C DETERMINE [A] AND (B] COEFFICIENTS

C
DV = (MASS-ZWDOT) *(IY-MQDOT)

& - (MASS*XG+ZQDOT) *(MASS*XG+MWDOT)
A11DV= (IY-MQDOT)* W (MASS*XG+ZQDOT) *M
Al2DV= (IY-MQDOT) * (MASS+ZQ) + (MASS*XG.ZQDOT) *(MQ-MASS*XG)
A13DV=- (MASS*XG+ZQDOT) *WIGHT
B1DV = (IY-MQDOT) *ZD+ (MASS*XG+ZQDOT) *MDJ
A2lDV= (MASS-ZWDOT) *MW+ (MASS*XG+MWDOT)*ZW
A22DV= (MASS-ZWDOT) *(MQ-MASS*XG)

& + (MASS*XG+MWDOT) *(MASS+ZQ)
A23DV=- (MASS-ZWDOT) *WqIGHT1
B2DV = (MASS-ZWDOT) *MD+ (MASS*XG+MWDOT) *ZD

C
A11=A11DV/DV
A12 =A12DV/DV
Al 3=Al 3DV/DV
A21=A2lDV/DV
A22=A22DV/DV
A2 3 A2 3DV/DV
Bi =BlDV/DV
B2 -B2DV/DV

C
C11DV= (IY-MQDOT) *MAS*ZG
Cl2DV=- (MAS*XG+ZQDOT) *MAS*ZG
C2lDV=- (MASS-ZWDOT) *MAS*ZG
C22DV= (MAS*XG44MWDOT) *MAS*ZG

C
Cl l=Cl DV/DV
C12 =C12DV/DV
C2 l=C2 lDV/DV
C22=C22DV/DV
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C
DO 1 IT-1,ITOTAL
WRITE (*,3001) IT,ITOTAL
READ (1O,*) U,TC
TC-TC*L/UO
U=U*Uo

C
C CALCULATE THE GAINS
C

POLE-i. O/TC
ALPHA3-4. O*POLE
ALPHA2-6.O*POLE**2
ALPHAI-4.O*POLE**3
ALPHAO- POLE**4
K4mALPHAO/ ((B1*A21-B2*A11) *UO**4

& + (B1*A23-B2*A13) *ZGB*UO**2)
A2M=B1 *U~* *2
A3M=B2 *UQ* *2
AOM=- (A11+A22) *UO-APHA
B1M=B2 *UQ* *2
B2M= (B2*A12-B1*A22) *UO**3
B3M= (B1*A21-B2*A11) *UO**3
BOM- (A11*A22-A21*A12) *UO**2-A3*ZGB-APHA2.B1*UO*UQ*K4
C1M= (B2*A11-B1*A21) *UO**3
C2M= (B1*A23-B2*A13) *ZGB*UO**2
COM- (A13*A21-A23*A11) *ZGB*UO+ALPH~1

& - (B2+B1*A22-B2*A12) *K4*UO**3
K2=C1M*BOM*A3M-BIM*COM*A3M- C1M*B3M*AOM
K2=K2/ (C1M*B2M*A3M-B1M*C2M*A3M- C1M*B3M*A2M)
K1= (COM-C2M*K2)/ClM
K3= (AOM-A2M*K2) /A3M

C
C EVALUATE NONLINEAR RUDDER EXPANSION COEFFICIENTS
C

DTTW=- (i.DO/(3.DO*DSAT**2) )*3.DO*K1*K1*K2
DTWW=- (1.DO/(3.DO*DSAT**2) )*3.DO*K1*K2*K2
DTTQ=- (1.DOI (3 .DO*DSAT**2) )*3 .DO*K1*K1*K3
DTQQ=- (1.DO/(3.DO*DSAT**2) )*3.D0*K1*K3*K3
DTTZ=- (1.DO/ (3 .DO*DSAT**2) )*3 .DQ*K1*K1*K4
DTZZ=- (1.DO/(3.DO*DSAT**2) )*3.D0*K1*K4*K4
DWWQ-- (1.DO/(3.DO*DSAT**2) )*3.DO*K2*K2*K3
DWQQ=- (1.DOI(3.DO*DSAT**2) )*3.D0*K2*K3*K3
DWWZ=- (1.DO/(3.DO*DSAT**2) )*3.D0*K4*K2*K2
DWZZ-- (1.DO/(3.DO*DSAT**2) )*3.D0*K4*K4*K2
DQQZ=- (l.DOI(3.DO*DSAT**2) )*3.DO*K4*K3*K3
DQZZ=- (1.DO/ (3.DO*DSAT**2) )*3 .DO*K4*K4*K3
DTWQ=- (1.DO/(3.DO*DSAT**2) )*6.DO*K1*K2*K3
DTWZ=- (1.DOI(3.DO*DSAT**2) )*6.D0*K1*K4*K2
DTQZ=- (1.DO/(3.DO*DSAT**2) )*6.D0*K1*K4*K3
DWQZ=- (1.DO/(3.DO*DSAT**2))*6.DO*K4*K2*K3
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DT'rT-- (1.DO/(3.DO*DSAT**2) )*1.DO*K1*K1*K1
DWWW-- (1.DO/(3.DO*DSAT**2) )*1.DO*K2*K2*K2
DQQQ-- (1.DO/ (3.DO*DSAT**2) )*1.DO*K3*K3*K3
DZZZ-- (1.DO/(3.DO*DSAT**2) )*1.DO*K4*K4*K4

C
C EVALUATE TRANSFORMATION MATRIX OF EIGENVECTORS
C

A(1,1) -O.ODO
A(1,2)-O.ODO
A(1,3)-l.ODO
A(1,4) -O.ODO
A(2, 1) -A13*ZGB+B1*U*U*K1
A(2,2)mAll*U +B1*U*U*K2
A(2,3)=A12*U ..B1*U*U*K3
A(2,4)= B1*U*U*K4
A(3, 1) =A23*ZGB+B2*U*U*K1
A(3,2)-A21*U +B2*U*U*K2
A(3,3)=A22*U +B2*U*U*K3

A(3,4)=B2*U*U*K4
A(4,1) --U
A(4,2)-1.ODO
A (4, 3) -0. ODO
A(4,4)=0.ODO
DO 11 1-1,4

DO 12 J-1,4
ASAVE(I,J) =A(I,J)

12 CONTINUE
11 CONTINUJE

CALL RG(4,4,A,WR,WI,1,YYY, IV1,FV1, IERR)
CALL DSOMEG(IEV,WR,WI,OMEGA,CHECK)
OMEGAO -OMEG.A
DO 5 I=1,4

T(I,1)= YYY(I,IEV)
T(I,2) =-YYY(I, IEV+1)

5 CONTINUE
IF (IEV.EQ.1) GO TO 13
IF (IEV.EQ.2) GO TO 14
IF (IEV.EQ.3) GO TO 15
STOP 3004

14 DO 6 I=1,4
T(I, 3) -YYY(I, 1)
T(I,4) =YYY(I,4)

6 CONTINUE
GO TO 17

15 DO 7 1-1,4
T(I, 3) =YYY(I, 1)
T (1,4) -YYY (1,2)

7 CONTINUE
GO TO 17

13 DO 16 1-1,4
T(I, 3) =YYY (I, 3)
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T(I,4) -YYY(I,4)
16 CONTINUE
17 CONTINUE

C
C CHECK THE EIGENVALUES
C

WRITE(21,2003) TC*UO/L,WI(1),WI(2),WI(3),WI(4),
& WR(1) ,WR(2) ,WR(3) ,WR(4)

C
C NORMALIZATION OF THE CRITICAL EIGENVECTOR
C

INORM- 1
IF (INORM.NE.0) CALL NORMAL(T)

C
C INVERT TRANSFORMATION MATRIX
C

DO 2 1-1,4
DO 3 J-1,4

TINV(I,J) =0.0
TSAVE(I,J) =T(I,J)

3 CONTINUE
2 CONTINUE

CALL DLUD(4,4,TSAVE,4,TLUD,IVLUD)
DO 4 1-1,4

IF (IVLUD(I).EQ.0) STOP 3003
4 CONTINUE

CALL DILU(4,4,TLUD,IVLUD,SVLUD)
DO 8 I=1,4

DO 9 J=1,4
TINV(I,J) =TLUD(I,J)

9 CONTINUE
8 CONTINUE

C
C CHECK Inv(T)*A*T
C

IMULT= 1
IF (IMtJLT.EQ.1) CALL MULT(TINV,ASAVE,T,A2)
IF (IMEJLT.EQ.0) STOP
P=A2 (3,3)
Q=A2 (4,4)

C WRITE (2 1,*) P, Q
C
C DEFINITION OF Nij
C

N11-TINV(1, 1)
N21-TINV(2, 1)
N31=TINV (3,1)
N41=TINV(4, 1)
N12=TINV(1,2)
N22=TINV(2, 2)
N32=TINV(3,2)
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N42-TINV(4,2)
N13-TINV(1,3)
N23-TINV(2,3)
N3 3-TINV (3, 3)
N43-TINV(4, 3)
N14-TINV(1,4)
N24-TINV(2,4)
N34-TINV(3,4)
N44-TINV(4,4)

C
C DEFINITION OF Mij
C

M11-T(1, 1)
M21-T(2, 1)
M31-T(3,1)
M41=T(4,1)
M12=T (1, 2)
M22=T(2,2)
M32=T(3,2)
M42-T(4,2)
M13=T(1, 3)
M2 3=T (2, 3)
M3 3=T (3, 3)
M43=T (4, 3)
M14=T (1, 4)
M24=T(2,4)
M34=T(3,4)
M44=T(4,4)

C
C DEFINITION OF Lij
C

L25=C11*M31*M31+C12*M21*M31
C

L26=2*C11*M31*M32+C12* (M21*M32+M22*M31)
C

L27=C11*M32*M32+C12*M22*M32
C

L35=C22*M31*M31+321*M21*M31
C

L36=2*C22*M31*M32+C21* (M21*M32+M22*M31)
C

L37=C22*M32*M32+C21*M22*M32
C

L21= DTTW*M11*M11*M21 + DTWW*M11*M21*M21 +
& DTTQ*M11*M11*M31 + DTQQ*M11*M31*M31 +
& DTTZ*M11*M11*M41 + DTZZ*M11*M41*M41 +
& DWWQ*M21*M21*M31 + DWQQ*M21*M31*M31 +
& DWWZ*M21*M21*M41 + DWZZ*M21*M41*M41 +
& DQQZ*M31*M31*M41 + DQZZ*M31*M41*M41 +
& DTWQ*M11*M21*M31 + DTWZ*M11*M21*M41 +
& DTQZ*M11*M41*M31 + DWQZ*M21*M41*M31 +
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& DTIT*M11*Mll*M11 + DWWW*M21*M21*M21+
& DQQQ*M31*M31*M31 + DZZZ*M41*M41*M41

C
TTWmM11*Mll*M22+2.O*M11*M12*M21
TWW=Ml2*M21*M2l+2. O*Ml1*M21*M22
TTQ-Mll*Mll*M32+2.O*Ml1*Ml2*M31
TQQmM12*M31*M31+2.O*M11*M31*M32
TTZmMll*Mll*M42+2.O*Mll*M12*M41
TZZ-M41*M41*M12+2.0*Mll*M41*M42
WWQ-M21*M21*M32+2.O*M3l*M2l*M22
WQQmM22*M31*M31+2.O*M31*M32*M21
WWZ-M21*M21*M42+2.O*M41*M21*M22
WZZ-M22*M41*M41+2.O*M41*M42*M21
QQZ-M31*M31*M42+2.O*M41*M31*M32
QZZ-M32*M41*M41+2.O*M41*M42*M31
TWQu.M11*M21*M32+M31* (M11*M22+M12*M21)
TWZ=M11*M21*M42+M41* (M11*M22+M12*M21)
TQZ=M11*M41*M32+M31* (M11*M42+M12*M41)
WQZ-M21*M41*M32.M31* (M21*M42+M22*M41)

TTT3O*M11*M11*M12
WWW-.0 *M21*M21*M22
QQQ=3.O*M31*M31*M32
ZZZ-3.O*M41*M41*M42

C
L22 =DTTW*TTW+DTWW*TWW+D¶ITQ*TTQ+DTQQ*TQQ+

& DTTZ*TTZ+DTZZ*TZZ+DWWQ*WWQ+DWQQ*WQQ+
& DWWZ*WWZ+DWZZ*WZZ+DQQZ*QQZ+DQZZ*QZZ+
& DTWQ*TWQ+DTWZ*TWZ+DTQZ*TQZ+DWQZ*WQZ+
& DTTT*TTT+DWWW*WWW+DQQQ*QQQ+DZZZ*ZZZ

C
TTW-Ml2*M12*M21+2.O*Ml1*M12*M22
TWW.Mll*M22*M22+2.*lM2M2
TT1QMl2*Ml2*M31+2.O*M11*M12*1432
TQQ=Ml1*M32*M32+2.O*M12*M31*M32
TTZ=M12*M12*M41+2.O*M11*M12*M42
TZZ=M11*M42*M42+2.O*M12*M41*M42
WWQ-M22*M22*M31+2.*2M2M3
WQQ=M21*M32*M32+2.O*M22*M31*M32
WWZ-M22*M22*M41+2.O*M21*M22*M42
WZZ=M21*M42*M42+2.O*M22*M41*M42
QQZ-M32*M32*M41+2.* *M31*M32*M42
QZZ-M31*M42*M42+2 . *M32*M41*M42
TWQmM12*M22*M31+M32* (M11*M22+M12*M21)
TWZ-Ml2*M22*M41.M42* (M11*M22+M12*M21)
TQZ=M12*M42*M31+M32* (M11*M42+M12*M41)
WQZ-M22*M42*M31+M32* (M21*M42+M22*M41)
TTT=3.O*M11*M12*M12
WWW=3. O*M1*M22*Mv22
QQQ=3.O*M31*M32*M32
ZZZ-3.O*M41*M42*M42

C
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L2 3 DTT*TNW+DTWW*TW++D¶TQ*'TQ+DTQQ*TQQ+
& DTTZ*TTZ+DTZZ*TZZ+DWWQ*WWQ+DWQQ*WQQ+
& DWWZ*WWZ+DWZZ*WZZ+DQQZ*QQZ+DQZZ*QZZ+
& DTWQ*TWO+DTWZ*TWZ.DTQZ*TQZ+DWQZ*WQZ+
& DTTT*TIT+DWWW*WWW+DQQQ*QQQ+DZZZ*ZZZ

C
L24- DTI'W*M12*M12*M22 +DTWW*Ml2*M22*M22 +

& D'I'IQ*M12*M12*M32 + DTQQ*M12*M32*M32 +
& DTTZ*M12*MI2*M42 +DTZZ*M12*M42*M42 +
& DWWQ*M22*M22*M32 + DWQQ*M22*M32*M32 +
& DWWZ*M22*M22*M42 + DWZZ*M22*M42*M42 +
& DQQZ*M32*M32*M42 + DQZZ*M32*M42*M42 +
& DTWQ*M12*M22*M32 + DTWZ*M12*M22*M42 +
& DTQZ*M12*M42*M32 + DWQZ*M22*M42*M32 +
& DTTT*M12*M12*M12 + DWWW*M22*M22*M22 +
& DQQQ*M32*M32*M32 + DZZZ*M42*M42*M42

C
L31=L21
L32=L22
L3 3-L2 3
L34=L24

C
C DEFINITION OF ALFA(I AND BETA(I
C

Dl -N32*L25 + N33*L35
D2 =N32*L26 + N33*L36
D3 =N32*L27 + N33*L37

C
Dll=-P
D12 =OMEGAO
D21=-2*OMEGAO
D22 = -P

D2 3=2 *OMEGAO
D32=-OMEGAO
D33=-P

C
ALFA2= (D2-D21*D1/D11-D23*D3/D33) I

& (D22-D21*D12/D11-D23*D32/D33)
ALFA1= (Dl-D12*ALFA2) /D11
ALFA3= (D3-D32*ALFA2) /D33

C
Dl =N42*L25 + N43*L35
D2 -N42*L26 + N43*L36
D3 =N42*L27 + N43*L37

C
Dl1=-Q
D12 =OMEGAO
D2l=-2*OMEGAO
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D22--Q
D23-2*OMEGAO
D32- -OMEGkO
D33--Q

C
BETA2- (D2-D21*Dl/D11-D23*D3/D33) /

& (D22-D21*Dl2/Dll-D23*D32/D33)
BETAla.(Dl-D12*BETA2) /Dl1
BETA3- (D3-D32*BETA2) /D33

C
L21A,2*Cll* (ALFA1*M31*M33+BETA1*M31tM34) +

& C12* (ALFA1* (M21*M33+M23*M31) +
& BETA1* (M21*M34+NM4*M3 1))

C
L22A=2*C11* (ALFA1*M32*M33+BETA1*M32*M34)

& +2*Cl1* (ALpA*M31*M33+BETA3*M31*M34)
& +C12* (ALFA1* (M22*M33+M32*M23)
& +BETA1* (M22*M34+M24*M32))
& +C12* (ALFA3* (M21*M33+M23*M31)
& +BETA3* (M21*M34+M24*M31))

C
L23A-2*C11* (ALFA2*M31*M33+BETA2*M31*M34)

& +2*C11* (ALFA3*M32*M33+BETA3*M32*M34)
& +Cl2*(ALFA2*(M21*M33+M23*M31)
& +BETA2* (M21*M34+M24*M31))
& .C12* (ALFA3* (M22*M33+M23*M32)
& +BETA3* (M22*M34+M24*M32))

C
L24A-2*C11* (LFA2*M32*M33+BETA2*M32*M34)

& +C12*(ALFA2*(M22*M33+M23*M32)
& +BETA2* (M22*M34+M24*M32))

C
L31A=2*C22* (ALjFA1*M31*M33+BETAI*M31*M34)

& +C21* (ALFA1* (M21*M33+M23*M31)
& +BETA1* (M21*M34+M24*M3 1))

C

L32A=2*C22* (ALFA1*M32*M33+BETA1*M32*M34)
& +2*C22* (ALFA3*M31*M33+BETA3*M31*M34)
& +C21* (ALFA1* (M22*M33+M32*M23)
& +BETA1* (M22*M34+M24*M32))
& +C21* (ALFA3* (M21*M33+M23*M31)
& +BETA3* (M21*M34+M24*M31))

C
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L33A=2*C22* (ALFA2*M31*M33+BETA2*M31*M34)
& +2*C22* (ALFA3*M32*M33+BETA3*M32*M34)
& +C21* (ALFA2* (M21*M33+M23*M31)
& +BETA2* (M21*M34+M24*M3 1))
& +C21* (ALFA3* (M22*M33+M23*M32)
& +BETA3* (M22*M34.M24*M32))

C

L34A-2*C22* (ALFA2*M32*M33+BETA2*M32*M34)
& +C21* (ALFA2* (M22*M33+M23*M32)
& .,BETA2* (M22*M34+M24*M32))

C
L21=L21A+eL21*B1*U*U-A13*ZGB*Ml1**3/6 .DO
L22=L22A+L22*B1*U*U-Al3*ZGB*M12*M11**2/2 .DO
L23=L23A+L23*B1*U*U-Al3*ZGB*M11*M12**2/2 .DO
L24-L24A+L24*B1*U*U-A13*ZGB*Ml2**3/6 .DO
L31-L31A+L31*B2*U*U-A23*ZGB*Mll**3/6 .DO
L32-L32A+L32*B2*U*U-A23*ZGB*M12*M11**2/2 .DO
L33=L33A+L33*B2*U*U-A23*ZGB*M11*M12**2/2 .DO
L34-L34A+L34*B2*U*U-A23*ZGB*M12**3/6 .DO
L41m-O.5*M11*M11* (M21-U*M11/3.O)
L42--M11* (M12*M21+O.5*M11*M22-O.5*U*M11*M12)
L43--M12* (M11*M22+O.5*M12*M21-O.5*U*M11*M12)
L44=-0.5*M12*MJ.2* (M22-TJ*M12/3 .0)

C
R11=N12*L21+N13*L31+Nl4*L41
R12=N12*L22+N13 *L32 +N14*L42
R13=Nl2*L234N13*L33+N14*L43
R14=N12*L24+N13*L34+N14*L44
R21-N22*L21.N23*L31+N24*L41
R22=N22*L22+N23 *L32+N24*L42
R23u=N22*L23+N23*L33+N24*L43
R24=N22*L24+N23*L34+N24*L44

C
C EVALUATE DALPHA AND DOMEGA
C

UINC=0.001
UR =U+UINC
UL =U-UINC
U =UR

C
*A(1, 1) -0. ODO
A(1,2) =0.ODO
*A(1, 3) -1. ODO
*A(1, 4) =0. ODO
A(2, 1) =A13*ZGB+B1*U*U*K1
A(2 .2) =Al1*U +B1*U*U*1(2
A(2,3)=A12*U +B1*U*U*K3
A(2,4)- B1*U*U*K4
A(3, 1)=23.*ZGB+B2*U*U*Kl
A(3,2)=A21*U +B2*U*U*K2
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A(3,3)-A22*U +B2*U*U*K3
A(3,4)-B2*U*U*K4

A(4, 1)--U
A(4,2) -1.ODO
A(4,3)-O.ODO
A(4,4)-O.ODO

C
CALL RG(4,4,AWRWI,OYYYI IV1,FV1, IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)
ALPHR-DEOS
OMEGR- FREQ

C
U-UL

C
A (1, 1) -0O.ODO
A(1,2) -0.ODO
A (1, 3) -1. ODO
A(1,4) =0.ODO
A(2, 1) =A13*ZGB+B1*U*U*K1
A(2,2)=A11*U +B1*U*IJ*K2
A(2,3)-A12*U +B1*U*U*K3
A(2,4)= B1*U*U*K4
A(3, 1) =A23*ZGB+B2*U*U*K1
A(3,2)-A21*U +B2*U*U*K2
A(3,3)-A22*U +B2*U*U*K3
A(3,4)- B2*U*U*K4
A(4, 1) =-U
A(4,2)-=1.ODO
A(4,3)=O.ODO
A (4, 4) =0O.ODO

C
CALL RG(4P4,AWR,WI, O,YYY, IV1,FV1, IERR)
CALL DSTABL (DEOS,WR,WI, PREQ)
ALPHL-DEOS
OMEGL= FREQ

C
DALPHA= (ALPHR-ALPHL)/I(UR-UL)
DOMEGA- (OMEGR-OMEGL) /(UR-UL)

C
C EVALUATION OF HOPF BIFURCATION COEFFICIENTS
C

COEF1-3 . *R11+Rl3+R22+3 .0*R24
COEF2-3 . *R21+R23 -R12 -3. O*R14
AMU2 =-COEF1I (8. O*DALPHA)
BETA2= . 25*COEFI

C TAU2 =- (COEF2-DOMEGA*COEF1/DALPHA) 1(8. 0*OMEGAO)
PER =2. 0*3. 1415927/OMEGAO
PER =PER*U/L
WRITE (20,2001) TC*UO/LCOEF1,DALPHA,

& PER,AMU2,TAU2,DOMEGA
1 CONTINUE
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STOP
1001 FORMAT ('ENTER NUMBER OF DATA LINES')
1002 FORMAT ('ENTER U0, ZG, AND DSAT')
1003 FORMAT ('ENTER BOW PLANE TO STERN PLANE RATIO')
1004 FORMAT ('ENTER ZG')
2001 FORMAT (7E14.5)
2002 FORMAT (6E14.5)
2003 FORMAT (9F11.5)
3001 FORMAT (215)

END

SUBROUTINE DSOMEG (IJK, WR ,WI, OMEGA, CHECK)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
CHECK--i. OD+25
DO 1 1-1,4

IF (WR(I) .LT.CHECK) GO TO 1
CHECK-WR (I)
IJ- I

1 CONTINUE
OMEGA-DABS (WI (IJ))
IF (WI(IJ).GT.0.DO) IJK-IJ
IF (WI(IJ).LT.0.DO) IJK=IJ-1
RETURN
END

SUBROUTINE DSTABL (DEOS, WR,W, OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR (4) , WI (4)
DEOS- -1.OD+20
DO 1 1-1,4

IF (WR(I) .LT.DEOS) GO TO 1
DEOS=WR(I)
IJ= I

1 CONTINUE
OMEGA-WI (IJ)
OMEGA=DABS (OMEGA)
RETURN
END

SUBROUTINE NORMAL (T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION T(4,4),TNOR(4,4)
CFAC-T(1, 1) **2+T(1,2) **2
IF (DABS(CFAC).LE.(1.D-10)) STOP 4001
TNOR (1, 1) = 1.DO
TNOR(2,1)=(T(1,1)*T(2,1)+T(2,2)*T(1,2))/CFAC
TNOR(3,1)=(T.(1,1)*T(3,1)+T(3,2)*T(1,2) )/CFAC
TNOR(4,1)=(T(1,1)*T(4,1)+T(4,2)*T(1,2))/CFAC
TNOR (1, 2) =0DO
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TNOR (3,2) -(T (3,2) *T(I,I) -T(3,i) *T(I, 2) )/CFAC
TNOR(4,2)- (T(4,2) *T(I,i) -T(4,I) *T(I,2) )/CFAC
DO 1 1-1,4

DO 2 J-1,2
T (I, J) -TNOR (I, J)

2 CONTINUE
1 CONTINUE

RETURN
END

SUBROUTINE MULT (TINV, A, T, A2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION TINV(4,4),A(4,4),T(4,4),AI(4,4),A2(4,4)
DO 1 1=1,4

DO 2 J-l,4
Al (I,J) =0.DO
A2 (I,J)0.DO

2 CONTINUE
1 CONTINUE

DO 3 1-1,4
DO 4 J-1,4

DO 5 K=l,4
Al (I,J) -A(I,K) *T(K,J) +A1 (I,J)

5 CONTINUE
4 CONTINUE
3 CONTINUE

DO 6 1-1,4
DO 7 J-1,4

DO 8 K=1,4
A2 (I,J)-TINV(I,K) *AI (K,J) +A2 (I,J)

8 CONTINUE
7 CONTINUE
6 CONTINUE

DO 11 1-1,4
C WRITE (*,101) (A(I,J),J-I,4)

11 CONTINUE
DO 12 I-1,4

C WRITE (*,101) (T(I,J),J-l,4)
12 CONTINUE

DO 10 1-1,4
C WRITE (*,101) (A2(I,J),J-I,4)

10 CONTINUE
C WRITE (*,101) A2(1,1)

RETURN
101 FORMAT (4E15.5)

END
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APPENDIX C - ADAMS -BABNFORTN SINULATION PROGRAM

C PROGRAM ABSIM1.FOR
C
C SUBOFF SIMULATION PROGRAM USING A FOURTH ORDER
C ADAMS-BASHFORTH INTEGRATION SCHEME
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER LDA, NA
PARAMETER (NA=4,LDA=4)
DOUBLE PRECISION L,MW,MASSIY,MQDOT,MWDOT,MQ,ICP,LEN,1LU.D

* DS,DBD~ELTA,DELTAUOITI1 31 TC,K1 K2,
*K3, K4, Fl(4), F2 (4), F3 (4), F,F*(4),
*A A(LDA, NA)D ,SAT

COMPLEX EVAL (NA)
C

DIMENSION XL(25) ,BR(25) ,VEC1 (25) ,VEC2 (25)
C

OPEN (1O,FILE='SIM.DAT' ,STATUS='OLD')
OPEN (30,FILE='ANG.DAT' ,STATUS='OLD')
OPEN (20,FILE='SIM.RES' ,STATUS='NEW')

C
C ENTER SPEEDS AND TIME DATA
C

READ(1O,*) UO,U,TC,TSIM,DELT,IPRNT,ALPHA
U=U*uo

C
C GEOMETRIC PROPERTIES AND HYDRODYNAMIC COEFFICIENTS
C

DSAT =O.4000D0
Pi in4O*DATAN(1.ODO)
RHO =1.94D0
CDZ =O.5000D0
L =13.9792D0
WEIGHT=1556 .2363D0
IY =561.32D0
MASS =WEIGHT/32.2
TC =TC*L/UO
ZQDOT=- 6. 3300E- 4*Q 5*RHO*L**4
ZWDOT=-1 .4529E-O2*O 5*RHO*L**3
ZQ = 7.545OE-O3*O.5*RHO*L**3
ZW =-1.391OE-O2*O.5*RHO*L**2
ZDS =(-5.6O3OE-O3*O.5*RHO*L**2)
ZDB =(-5.6O3OE-O3*O.5*RHO*L**2)
MQDOT=-8 . 8OOE-O4*O.*HOL*
MWDOT=-5 .61OOE-O4*O 5*PJ{O*L**4
MQ =-3.7O2OE-O3*O.5*RHO*L**4
MW - 1.Q324E-O2*O.5*RHO*L**3
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MDS -(-2.4O9OE-O3*O.5*RHO*L**3)
MDB -( 2.4O9OE-O3*O.5*RHO*L**3)

ZG -O.4D0
ZE -O.ODO
XG -O.ODO
XB -Q.ODO
ZGB -ZG-ZB
ZD= ZDS +ALPHA* ZDB
MD.MS +ALPHA*MDB

C
C SET INITIAL CONDITIONS

THETA=O. ODO
C READ (30, *) THETA

W =O.lDO
Q =O.ODO
Z =O.QDO
Z =Z*L

C
C DETERMINE [A] AND [B] COEFFICIENTS
C

DV = (MASS-ZWDOT) *(IY-MQDOT)
& - (MASS *XG+ZQDOT) *(MASS *XG+MWDOT)
AilDV= (IY-MQDOT)* W (MASS*XG+ZQDOT) *M
Al2DV= (IY-MQDOT) * (MASS+ZQ) + (I4ASS*XG+ZQDOT) *(MQ-MASS*XG)
Al3DV=- (MASS*XG+ZQDOT) *WIGHT
BlDV = (IY-MQDOT) *ZD+ (MASS*XG+ZQDOT) *MDJ
A2lDV= (MASS-ZWDOT) *MW+ (I4ASS*XG+MWDOT)*ZW
A22DV= (MASS-ZWDOT) *(MQ-MASS*XG)

& + (MASS*XG+MWDOT) * (MASS+ZQ)
A23DV=- (MASS-ZWDOT) *WIGI{T
B2DV = (MASS-ZWDOT)*MDfl+ (MASS*XG+MWDOT) *ZD

C
All =Al lDV/DV
A12 =A12DV/DV
A13 =Al3DV/DV
A2 l=A2lDV/DV
A22=A22DV/DV
A2 3=A2 3DV/DV
El =BlDV/DV
B2 =B2DVIDV

C
C CALCULATE THE CONTROL GAINS
C

POLE=l. O/TC
ALPHA3-4.O*POLE
ALPF!A2=6.O*POLE**2
ALPHA1-4.O*POLE**3
ALPHAO- POLE**4
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K4-ALaPHAO/ ((B1*A21-B2*A11) *UO**4
& + (B1*A23-B2*A13) *ZGB*UO**2)
A2M=Bl*UO**2
A3M-B2 *UO* *2
AOM=--(A11+A22)*U LPA
BIM-B2 *UQ* *2
B2M- (B2*A12-B1*A22) *UO**3
B3M- (B1*A21-B2*A11) *UO**3
BOM- (A11*A22-A21*A12) *U0**2-A23*ZGB-ALPHA2-B1*U0*U0*K4
C1M= (B2*A11-B1*A21) *UO**3
C2M- (B1*A23-B2*A13) *ZGB*UO**2

COMm (Al3*A21-A23*A11) *ZGB*U0+ALPH~
& - (B2+B1*A22-B2*A12) *K4*UO**3
K2=CIM*BOM*A3M- B1M*C0M*A3M- C1M*B3M*AOM
K2=K2/ (C1M*B2M*A3M-B1M*C2M*A3M-C1M*B3M*A2M)
Kim (C0M-C2M*K2) /C1M
K3= (AOM-A2M*K2) /A3M

C
C WRITE(*,*) K1,K2,K3,K4
C
C DETERMINE THE EIGENVALUES
C

A(1, 1) =0.ODO
A(1,2) =0.ODO
A(1, 3) =1.ODO
A(1, 4) =0.ODO
A(2, 1) =A13*ZGB+B1*U*U*K1
A(2,2)=A~i*U +B1*U*U*K2
A (2,3) =A12*U +B1*U*U*K3
A(2,4)= Bi*U*U*K4
A(3, 1) =A23*ZGB+B2*U*U*K1
A(3,2)=A21*TJ +B2*U*U*K2
A(3,3)=A22*U +B2*U*U*K3
A(3,4)= B2*U*U*K4
A(4, 1)=i-U
A (4, 2) = 1. ODO
*A(4, 3)-0. ODO
A (4 ,4) =0.0OPO

C
CALL DEVLRG(NA,A,LDA,EVAL)

C
CALL DWRCRN ('EVAL',1,NA,EVAL,1,0)

C
C DEFINE THE LENGTH X AND BREADTH B TERMS FOR THE
C INTEGRATION
C

XL( 1)= O.OOOODO
XL( 2)= 0.1000DO
XL( 3)- 0.2000D0
XL( 4)= O.3000D0
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XL( 5)- O.4000D0
XL( 6)- 0.5000D0
XL( 7)- O.6000D0
XL( 8)- O.7000D0
XL( 9)- 1.OOOODO
XL(1O)- 2.OOOODO
XL(11)- 3.OOOODO
XL(12)- 4.OOOODO
XL(13)- 7.7143D0
XL(14)- 10.OOOODO
XL(15)- 15.1429D0
XL(16)- 16.OOOODO
XL(17)- 17.OOOODO
XL(18)- 18.OOOODO
XL(19)- 19.OOOODO
XL(20)- 20.OOOODO
XL(21)= 20.1000DO
XL(22)= 20.2000D0
XL(23)= 20.3000D0
XL(24)= 20.4000D0
XL(25)= 20.4167D0

DO 102 N = 1,25
XL(N) = (L/20)*XL(N) -L/2

102 CONTINUE

C
BR( 1)= O.OOODO
BR( 2)= 0.485D0
BR( 3)= 0.658D0
BR( 4)= 0.778D0
BR( 5)= 0.871D0
BR( 6)= 0.945D0
BR( 7)= 1.O1ODO
BR( 8)= 1.OEODO
BR( 9)= 1.180D0
BR(1O)= 1.410D0
BR(11)= 1.570D0
BR(12)= 1.660D0
BR(13)= 1.670D0
BR(14)= 1.670D0
BR(15)= 1.670D0
BR(16)= 1.630D0
BR(17)= 1.370D0
BR(18)= 0.919D0
BR(19)= 0.448D0
BR(20)= O.195D0
BR(21)- O.188D0
BR(22)- 0.168D0
BR(23)= 0.132D0
BR(24)= 0.053D0
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BR(25)- 0.OOODO
C

PISIM -TSIM/DELT
ISIM -PISIM

C
C SIMULATION BEGINS
C

DO 100 I-1,ISIM
C
C CALCULATE THE DRAG FOCE INTEGRATE THE DRAG OVER THE
C VEHICLE
C

DO 101 K=1,25
UCF=W-XL (K) *Q
VECi (K) =BR (K) *UCF*DABS (UCF)
VEC2 (K) -BR (K) *UCF*DABS (UCF) *XL (K)

101 CONTINUE
CALL TRAP(25,VEC1,XLHEAVE)
CALL TRAP(25,VEC2,XL,PITCH)
HEAVE=0 5*RHO*CDZ*HEAVE
PITCH- 0.5*RHO*CDZ*PITCH

C
C COUPLING EQUATIONS
C

DWDV- (IY-MQDOT) *HEAVE+ (MASS*XG+ZQDOT) *PITCH
DQDV= (MASS-ZWDOT) *PITCH+ (MASS*XG+MWDOT) *HEAVE
C1DV- (IY-MQDOT) *MAS*ZG*Q**2

& - (MASS*XG+ZQDOT) *MASS*ZG*W*Q
C2DV=--(MASS-ZWDOT) *MASS*ZG*W*Q

& + (MAS*XG44MqOT) *14SS*ZG*Q**2
C

DW=DWDV/DV
DQ=DQDV/DV
Cl =C1DV/DV
C2 -C2DV/DV

C
C LIMITING CONDITION
C

IF (ABS(THETA) .GT. P1/4) THEN
WRITE(*,*) 'BUBBLE EXCEEDED +/- 45, BOAT WAS LOST'
STOP

ENDIF
C
C CONTROL EQUATIONS
C

DELTA = (K1*THETA+K2*W+K3*Q+K4*Z)
DELTA = DSAT*DTANH(DELTA/DSAT)

C IF (DELTA .GT. 0.4) DELTA-0.4
C IF (DELTA .LT. -0.4) DELTA=-0.4
C

THEDOT=Q

78



WDOT mAll*U*W+Al2*U*Q+A13*ZGB*DSIN (THETA)
& +B1*U*U*DELTA+DW+C1

QDOT -A2l*U*W+A22*U*Q+A23*ZGB*DSIN (THETA)
& +B2 *U*U*DELTA+DQ+C2

MDOT --U*DSIN (THETA) +W*DCOS (THETA)
IF (I.GT.3) GO TO 150

C
C INITIAL FIRST ORDER INTEGRATION
C

THETA = THETA + DELT*THEDOT
W = W + DELT*WDOT
Q w Q + DELT*QDOT
Z = Z + DELT*ZDOT

C
Fl (I) =THEDOT
F2 (I) -WDOT
F3 (I) =QDOT
F4 (I) =ZDOT

C
C .ADAMS-BASHFORTH INTEGRATION
C

150 F1(4)=Q
F2 (4) =A11*U*W+A12*U*Q+A13*ZGB*DSIN (THETA)

& +B1*U*U*DELTA+DW+C1
F3 (4) =A21*U*W+A22*U*Q+A23*ZGB*DSIN (THETA)

& +B2 *U*U*DELTA+DQ+C2
F4 (4) =-U*DSIN (THETA) +W*DCOS (THETA)

C
THETA=THETA+ (DELT/24.0) *(55.0*Fl (4)

1 -59.0*F1(3)+37.0*F1(2) -9.0*F1(1))
W =W+(DELT/24.0)*(55.0*F2(4)

1 -59.0*F2(3)+37.0*F2(2) -9.0*F2 (1))
Q =Q+(DELT/24.0)*(55.0*F3(4)

1 -59.0*F3(3)+37.0*F3(2)-9.0*F3(1))
Z =Z+(DELT/24.0)*(55.0*F4(4)

1 -59.0*F4(3)+37.0*F4(2)-9.0*F4(l))
C

Fl (1)-Fl (2)
Fl (2) =F1 (3)
Fl (3) -Fl(4)
F2 (1) =F2 (2)
F2 (2) -F2 (3)
F2 (3) =F2 (4)
F3 (1) -F3 (2)
F3 (2) -F3 (3)
F3 (3) -F3 (4)
F4 (1)-F4 (2)
F4 (2) =F4 (3)
F4 (3) =F4 (4)

C
TIME-I*DELT
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IF (J.NE.IPRNT) GO TO 100
ALFA-W/U
ALFA- (-DATAN (ALFA) )*180/PI
WRITE (20,991) TIME*UO/L,Z/L,THETA*180/PI,

& DELTA,W,Q,ALFA
WRITE (*,991) TIME*UO/L,Z/L,THETA*180/PI,

& DELTA,WQ,ALFA
Jwo

C
100 CONTINUE

STOP
991 FORMAT (2X,F8.2,6(2X,F8.4))

END
C

SUBROUTINE TRAP (N,A, B, OUT)
C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A (1) , B(1)
N1=N-1
OUT=0. 0
DO 1 I=1,N1

OUT1=0.5*(A(I)+A(I+1) )*(B(I+1) -B(I))
OUT =OUT+OUT1

1 CONTINUE
RETURN
END
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APPENDIX D - ROOT LOCUS PROGRAM3

ITHIS MATLAB PROGRAM FINDS THE ROOT LOCUS FOR A GIVEN UO, Zg,
!k Alpha, AND Tc.
W-1556.2363;B1-1556.2363;
Iy-561 .32;
g-32.2;
rn-Wig;
rho-i. 94;
L-13.9792;
xg-O;zg..4;
zgb-.4;
ndl=. 5*rho*LA2;
nd2= .5*rho*LA3;
nd3=. 5*rho*LA4;
nd4= .5*rho*LA5;

e = zeros (100, 4);
X - zeros(4,1);
Y = zeros(4lI);
Z = zeros(4,1);

Alpha=Q;

Zqdnd=-6.33e-4;Zwdnd=-l.4529e-2;Zqnd=7.545e-3;Zwnd=-l.391e-2;
Zds=.5*(-5.6O3e-3);Zdb=-.5*5.6O3e-3;Zdltnd=(Zds+Alpha*Zdb);
Mqdnd=-8.8e-4;Mwdnd=-5.6le-4;Mqfld=-3.702e-3;Mwfld=1.0324e-2;
Mds=.5*(-O.OO24O9) ;Mdb=.5*O.002409;Mdltfld=(Mds+Alpha*Mdb);

Zqd=nd3 *Zqdnd; Zwd=nd2*Zwdnd; Zq=nd2*Zqnd; Zw=ndl*Zwnd;
Zdlt=ndl*Zdltnd;

Mqd=nd4 *Mqdnd ;Mwd=nd3 *Mwdnd ;Mq=nd3 *Mqnd ;Mw=nd2 *Mwnd;
Mdlt=nd2*Mdltnd;

Dv= (m-Zwd) *(Iy-Mqd) -(rn*xg+Zqd) *(m*xg+Mwd);
allDv- (Iy-Mqd) *Zw+ (r*xg+Zqd) *Mw;
al2Dv= (Iy-Mqd) * (r+Zq) +(m*xg+Zqd) *(Mq-rn*xg);
al3Dv=- (m*xg+Zqd) *W;
blDv= (Iy-Mqd) *Zdlt+ (r*xg+Zqd) *Mdlt;
a2lDv= (r-Zwd) *Mw+ (m*xg+Mwd) *Zw;
a22Dv= Cm- Zwd) *(Mq-m*xg) +(m*xg+Mwd) *(m-iZq);
a23Dv=--(m-Zwd) *W;
b2Dv- (m-Zwd) *Mdlt+ (r*xg+Mwd) *Zdlt;

ail-allDv/Dv; a12-al2Dv/Dv; a13=al3Dv/Dv;
a21-a2lDv/Dv; a22-a22Dv/Dv; a23=a23Dv/Dv;
bl=blDv/Dv; b2=b2Dv/Dv;
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u - 9;
for j - 1:240
U - j/20;
sl (j) - U;
Fn-sqrt (UA2/ (zgb*g));
tconst-4 .7512;
pole--li (tconst*L/u);
pl.[pole pole-0.01 pole-0.02 pole-Q.03];
a-[O 0 1 O;a13*zgb all*u a12*u 0;a23*zgb a21*u a22*u 0; ...

-u 1 0 0];
aU=[0 0 1 0;a13*zgb all*U a12*U 0;a23*zgb a2l*U a22*U 0;-U

1 0 0];

b=[0;bl*uA2;b2*uA%2;0];

btJ=[0;bl*UA2;b2*UA2;0];

K1=place(a,b,pl);

Y = eig(aU-bU*K1);
e(j,:) =I

end

for k =1:200

U = 8.9 + k/1000;
s2(k) = U;
Fn=sqrt (U A2/ (zgb*g));

tconst=4 .7512;

pole--li (tconst*L/u);

pl=[pole pole-0.01 pole-0.02 pole-0.03];

a= [0 0 1 0;a13*zgb all*u a12*u 0;a23*zgb a21*u a22*u 0; ...

-u 1 0 0];

aUl=[0 0 1 0;a13*zgb all*U a12*U 0; ...

a23*zgb a21*U a22*U 0;-U 1 0 0];

b=[0;bl*uA2;b2*uA2;0];

bU=[0;bl*U^2;b2*UA2;0];

K1=place(a,b,pl);

Z = eig(aU-bU*K1);
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f (k,: Z'

end

axisU[-.4 .1 -.8 .8])
plot (real(e (1,1)) ,imag(e (1,1)) ,'x',...

real (e(1,2)) ,imag(e(1,2)),x ...
real (e(l,3)) , izag(e(1,3)) ,'x',.
real (e(1,4)) ,imag(e(l,4)) ,'x')

hold
plot(real(e(:,l)),imag(e(:,l)),........

real~(:,2) ,ima~e(:,)),II ...

real(e(:,3)),imrag(e(:,3)).... ....

pltreal(e(:,3)),imag(e(:,3)) ........
pltreal(f(:,l)),iniag(f(:,1)).... ....

real(f(:,3)),iniag(f(:,3)) ........
real (f (:,4)), imag(f (:,4)) ,' *')

grid,title('EIGENVALUES FOR SPEEDS 1 TO 100 FPS')
ttitle('DETAILED LOW SPEED ROOT LOCUS PLOT')
pause
hold
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